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Abstract. The order-q Tsallis (Hq ) and Ŕenyi entropy (Kq ) receive broad applications in
the statistical analysis of complex phenomena. A generic problem arises, however, when these
entropies need to be estimated from observed data. The finite size of data sets can lead to serious
systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem
of estimating generalized entropies from finite samples and derive the Bayes estimator of the
order-q Tsallis entropy, including the order-1 (i.e. the Shannon) entropy, under the assumption of
a uniform prior probability density. The Bayes estimator yields, in general, the smallest mean-
quadratic deviation from the true parameter as compared with any other estimator. Exploiting
the functional relationship betweenHq andKq , we use the Bayes estimator ofHq to estimate
the Ŕenyi entropyKq . We compare these novel estimators with the frequency-count estimators
for Hq andKq . We find by numerical simulations that the Bayes estimator reduces statistical
errors of order-q entropy estimates for Bernoulli as well as for higher-order Markov processes
derived from the complete genome of the prokaryoteHaemophilus influenzae.

1. Introduction

Building on the works of Shannon [1] and Khinchin [2], generalized entropies have
witnessed an increasing interest in their application to characterize complex behaviour
in models and real systems. As the Shannon entropy is formally defined as an average
value, the idea underlying a generalization is to replace the average logarithms by an
average of powers. Then this gives rise to the order-q Tsallis entropyHq [3, 4] or,
similarly, the Ŕenyi entropyKq [5]. The external parameterq applies to describe
inhomogeneous structures of the probability distribution and hence the associated process
under consideration. From both order-q entropies,Hq andKq , the Shannon entropy is
obtained in the limitq → 1. Applications of order-q entropies occur in a variety of fields
of sciences such as, e.g. nonlinear dynamical systems [6–10], statistical thermodynamics
[11–16], classical mechanics [17], or evolutionary programming [18, 19].

Here we address the estimation of these entropies from a finite set of experimental data.
Under the assumption of a stationary process generating the data, the data set is composed
out of N data points chosen fromM possible different outcomes. The problem that arises
when entropies are to be estimated from these finite data sets is that the probabilities area
priori unknown. Naively replacing these probabilities by the sampled relative frequencies
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produces large statistical and systematic deviations of estimates from the true value [20, 21].
This problem becomes serious when the number of data pointsN is in the order of magnitude
of the number of different statesM, which occurs in many practical applications, for example
in the estimations of correlations and dimensions. In such cases, the choice of an estimator
with small deviations from the true value becomes important. Several different estimators
have thus been developed, mainly devoted to the estimation of the Shannon entropy [22–
27]. Specific estimators for the Rényi entropy and for the dimensions associated to them
have also been derived, as well as for upper bounds on entropy estimates [24, 27].

While one can, in principle, calculate the systematic errors arising from frequency
counts, less fluctuating entropy estimates can only be obtained by employing a different
entropy estimator. The estimator which possesses the optimal property to minimize the
mean-quadratic deviation of the estimate from the true value, subject to a certain prior
assumption, is customarily referred to as the Bayes estimator. In this work, we derive the
Bayes estimator of the Tsallis entropy and discuss its statistical properties. We then exploit
this Bayes estimator to measure the Rényi entropy.

This paper is organized as follows. In section 2 we introduce the generalized entropy
concept, starting from the definition of the canonical (Shannon) entropy, which we extend
to non-logarithmic (order-q) averages. In section 3 we turn to the problem of estimating
functions of probability distributions from a finite, discrete data set and introduce the Bayes
estimator of a statistic. In section 4 of this work, we derive the Bayes estimator of the
order-q Tsallis entropy under the prior assumption of a uniform prior probability density.
We discuss properties of this estimator ofHq and contrast the result obtained with the
frequency-count estimator. Using the functional relationship connecting the order-q Tsallis
entropy,Hq , with the Ŕenyi entropy,Kq , we propose a method on how to extractKq from
a data set in section 5. In section 6 we apply the Bayes estimators to numerically compute
order-2 entropies of Markov processes with zero- and five-step memories. Our concluding
remarks are given in section 7. Consigned to appendix A we present some analytic results
about systematic errors (i.e. the bias) of the entropy estimators, which complete this work.

2. Generalized entropies

This section is aimed at introducing the notation used throughout this work as well as giving
the definitions of the order-q Tsallis entropy,Hq , and the Ŕenyi entropy,Kq . We then review
some basic properties of these entropies, which will finally allow us the derivation of an
indirect Bayes estimator of the Rényi entropy in section 5.

Consider a random variableA that can take onM different discrete valuesai ,
i = 1, . . . ,M, with an associated probability vectorp ≡ {p1, . . . , pM} with components
pi ≡ p(ai). The probabilities satisfy the two constraints 06 pi 6 1 and

∑M
i=1pi = 1. It

is customary to refer to the set of all possible outcomes as the alphabetA with cardinality
M. Then the Shannon entropy ofA is defined as

H(A) = −
M∑
i=1

pi log2pi ≡ −〈log2pi〉. (1)

Since the base of the logarithm is chosen to be 2, the Shannon entropy is measured in units
of bits. One distinctive property ofH , which is not shared by the generalized entropies,
is worth mentioning: the entropy of a composite event can be given as the sum of the
marginal and the conditional entropy.

By equation (1), events having either a particularly high or low occurrence do not
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contribute much to the Shannon entropy. In order to weight particular regions of the
probability vectorp, one can consider the following partition function:

Zq(A) =
M∑
i=1

p
q

i ≡ 〈pq−1
i 〉. (2)

In contrast to equation (1), the average logarithm is now replaced by an average of powers
of q. Clearly, a change of the orderq will change the relative weights of how the event
i contributes to the sum. Therefore, varying the parameterq allows us to monitor the
inhomogeneous structure of the distributionp: the largerq, the more heavily the larger
probabilities enter intoZq , and vice versa. Obviously,Z0 equals the number of eventsi
with non-vanishing probability, andZ1 introduces normalization. Then the order-q Tsallis
entropy is defined as

Hq(A) = 1

ln 2

Zq(A)− 1

1− q ≡ 1

ln 2

〈pq−1
i − 1〉
1− q . (3)

Since the prefactor is chosen to be 1/ ln 2, the Tsallis entropy is measured in units of bits.
This can be seen by considering the limitq → 1: we easily verify that limq→1Hq = H
holds.

The order-q entropy due to Ŕenyi is given by

Kq(A) = 1

1− q log2Zq(A) ≡ − log2〈pq−1
i 〉1/(q−1). (4)

Here the argument of the logarithm is the generalized average of the numberspi . By
equation (3), the relationship connecting both order-q entropies reads as

Kq(A) = 1

1− q log2[1+ (1− q) ln 2 Hq(A)]. (5)

From equation (5) we see that for fixedq, Kq andHq are monotonic functions of one
another and that limq→1Kq = H holds.

Let us summarize the following features of order-q entropies.
(i) Hq > 0 andKq > 0. For givenM, the global maxima (minima) are attained at

pi = 1/M ∀i for q > 0 (q < 0). In particular, we have thatKmax
q = Hmax.

(ii) Hq andKq are monotonically decreasing functions ofq for arbitrary probability
vectorsp: Hq > Hq ′ andKq > Kq ′ for q < q ′.

(iii) Hq(A) is a concave (convex) function of the probabilities givenq > 0 (q < 0).
The curvature dependence ofKq upon q andp is non-trivial [4]. Yet the following two
inequalities hold:Kq is a convex (concave) function ofpi for q < 0 (0< q 6 1).

(iv) Considering two subsets,A andB, thenKq(A,B) obeys additivity for independent
random variables, whereasHq(A,B) is pseudo-additive. That is, we findHq(A,B) =
Hq(A)+Hq(B)+ (1− q)Hq(A)Hq(B). Furthermore,Hq(A,B) generalizes the Shannon-
additivity to the orderq (see, e.g. [1] or [4] for a definition and discussion).

By the above properties, the whole set of order-q entropies (which generalize the
Shannon entropy) provides us with a whole spectrum of entropies, in whichq = 1 is
singled-out by the property of composite events. In the light of the fact thatKq is indeed
additive but, in general, not a concave (convex) function of the probabilitiespi on the entire
simplex, it is remarkable that via the nonlinear transformation (5) we are able to switch
between two types of entropies of orderq, either having the property of additivity or of
well-defined concavity (convexity).
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Figure 1. Comparison of the Bayes and the frequency-count estimator of the Shannon entropy,
Ĥ1 andH̄1 respectively. We generate an ensemble of 10 000 sequences, each of which composed
of N = 250 data points chosen from an alphabet with cardinalityM = 256. The 256 possible
outcomes were samples from a uniform distribution,pi = 1/M. From each such sequence,
the entropy is estimated by the Bayes estimator and the frequency-count estimator. This figure
displays the corresponding histograms of̂H1 (right) and H̄1 (left), measured in units of bits
per symbol. It can be seen that the variance ofĤ1 is about one order of magnitude smaller in
comparison with the variance of̄H1. Note that the significant negative bias can, in principle,
be approximated by length correction formulae. Therefore, it is the smaller variance ofĤ1 that
makes this estimator superior.

3. Bayes’ estimators

The generic problem in estimating entropies from finite realizations is that the probabilities
pi remain hidden to the observer. For a given ensemble of data sets one estimator can
on average come close to the true value for some probability distribution, while a change
in the distribution may favour another estimator. In particular, if the cardinality ofA is
in the order of the number of data points, then fluctuations increase and estimates usually
become significantly biased. By bias we denote the deviation of the expectation value of
the estimator from the true value. Thus, the problem in estimating functions of probability
distributions is twofold: we seek to construct an estimator whose estimates both fluctuate
with the smallest possible variance and are least biased.

The Bayes estimator has the optimal property of minimizing the mean-quadratic
deviation [28–30]. This feature is illustrated in figure 1, by displaying the distribution
of estimates of the order-1 Tsallis (i.e. the Shannon) entropy for two estimators: the Bayes
estimatorĤ1 and the frequency-count estimator̄H1 with M = 256 andN = 250. For
this investigation, the Bayes estimator is given in (17). Defining the relative frequencies
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to befi = Ni/N , whereNi is the number of observations of the symboli, the frequency-
count estimator reads as̄H1 = −

∑M
i=1 fi log2 fi . Inspecting the width of the variances of

our estimates reveals the superiority of the Bayes estimator: fluctuations of its estimates are
significantly suppressed, as compared with the fluctuations of the frequency-count estimates.
However, let us point out yet another feature, namely that there is still a substantial bias
affecting both estimates. An approach to approximate (and hence correct) the entropy bias
of Ĥq will be given in appendix A.

4. The Tsallis entropy estimator

In this section we focus upon the first task stated in the preceding section, by deriving
the Bayes estimator of the generalized Tsallis entropyHq . The total number of symbols
available in a sample for the estimation is given byN = ∑M

i=1Ni . Let further
P(N |p) = N ![

∏M
i=1p

Ni
i /Ni !] be the underlying conditional probability distribution to

obtain the (multinomially distributed) observable vectorN with componentsNi . Finally,
Q(p) denotes the prior probability density of the probability vectorp. It satisfies
the constraint

∫
S dpQ(p) = 1 where the integration extends over the whole simplex

S ≡ {p|∀i pi > 0,
∑M

i=1pi = 1}. Then the Bayes estimator ofHq reads as

Ĥq(N ) = 1

W(N )

∫
S

dpHq(p)P (N |p)Q(p) (6)

where the normalization constant is given by

W(N ) =
∫
S

dpP(N |p)Q(p). (7)

According to Bayes’ theorem,P(p|N ) = P(N |p)Q(p)/Q(N ). Thus, equation (6) is
equivalent toĤq(N ) =

∫
S dp Hq(p)P (p|N ), which is the average ofHq(p) over the

posterior distributionP(p|N ).
In what follows, we will derive the Bayes estimator ofHq under the assumption of a

uniform prior probability densityQ(p) = constant. That is to say, we regard all possible
probability vectorsp ∈ S to be relevant.

If we write down the Bayes estimator ofHq as

Ĥq(N ) = 1

ln 2

1

1− q [Ẑq(N )− 1] with Ẑq(N ) = 1

W(N )

∫
S

dp
M∑
i=1

p
q

i P (N |p) (8)

then it can be seen that the derivation of̂Hq reduces to the derivation of the Bayes estimator
of the partition functionZq . The normalization constantW and the quantityW ′ (see later)
will be evaluated in appendix B. Interchanging the integral with the finite sum,Ẑq may be
cast into the form

Ẑq(N ) = 0(N +M)∏M
j=10(Nj + 1)

×
{ M∑
i=1

∫
S

M∏
j=1

dpj p
(Nj+δij q)
j

}
. (9)

Integrating overM − 1 of theM components, we obtain

Ẑq(N ) = 0(N +M)∏M
j=10(Nj + 1)

×
{ M∑
i=1

∫ 1

pi=0
dpi W

′(pi;N )pqi
}
. (10)
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Evaluating the remaining integral, we arrive at

Ẑq(N ) = 0(N +M)
0(N +M + q) ×

[ M∑
i=1

0(Ni + 1+ q)
0(Ni + 1)

]
(11)

and thus, composing all above expressions, we eventually obtain

Ĥq(N ) = 1

ln 2

1

1− q
{

0(N +M)
0(N +M + q) ×

[ M∑
i=1

0(Ni + 1+ q)
0(Ni + 1)

]
− 1

}
. (12)

Expression (12) constitutes a central result of this work: the Bayes estimator of the Tsallis
entropy of orderq. To illustrate the differences between the fluctuations of the Bayes
estimator and the frequency-count estimator ofHq , in the following we will simplify
expression (12) for the special casesq = 1 andq = 2. The motivation for this parameter
choice stems from the following. We recall thatHq is indeed a generalization ofH ,
providing upper and lower bounds for the Shannon entropy. As such, we wish to make
contact with the Bayes estimator̂H for the Shannon entropy. This is realized in the limit
q → 1. The second example,q = 2, plays an important role in the statistical analysis of
nonlinear dynamical systems. Hereq = 2 gives rise to quantities such as the correlation
dimension and the second-order Kolmogorov entropy (see, e.g. [31] and references therein)
as well as a generalization of the mutual information which preserves positivity [32].

To obtainĤ1, we introduce the auxiliary function

F(q) =
[ M∑
i=1

0(Ni + 1+ q]

0(Ni + 1)

]/
0(N +M + q). (13)

This will become useful due to the necessary consideration of the limitq → 1, since
expression (12) is not defined otherwise. Introducingαq = Ni+1+q andβq = N+M+q,
we may write at the limit point

Ĥ1(N ) = lim
q→1

Ĥq(N ) = −0(β0)

ln 2

∂F (q)

∂q

∣∣∣∣
q=1

(14)

where

∂F (q)

∂q
=

M∑
i=1

{
0(αq)

0(α0)0(βq)
(ψ(1)(αq)− ψ(1)(βq))

}
. (15)

Hereψ(1)(z) = d ln0(z)/dz is the Digamma function. Sinceα1 and β1 are integers, we
may expressψ(1)(z) in terms of the finite harmonic sumψ(1)(z) = ∑z−1

l=1 1/l − Ec, with
Ec = limR→∞(

∑R
r=1 1/r − lnR) being Euler’s constant. Inserting this expression into

equation (15), we obtain

∂F (1)

∂q
= −

M∑
i=1

{
0(α1)

0(α0)0(β1)

( β0∑
l=α1

1

l

)}
. (16)

Hence we arrive at

Ĥ1(N ) = 1

ln 2

[ M∑
i=1

Ni + 1

N +M
( N+M∑
l=Ni+2

1

l

)]
. (17)

Equation (17) defines the Bayes estimator of the order-1 Tsallis entropy under a uniform
prior probability density. Comparing the above expression with results derived in [29, 33],
we verify the consistency of expression (12) in the limitq → 1. That is, the Bayes estimator
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of the order-1 Tsallis entropy is identical to the Bayes estimator of the Shannon entropy:
Ĥ1 ≡ Ĥ .

We now turn to the caseq = 2. From equation (11) we can read off the Bayes estimator
of pqi to be

p̂
q

i =
0(N +M)

0(N +M + q) ×
0(Ni + 1+ q)
0(Ni + 1)

. (18)

Thus, we write down̂H2 in the form

Ĥ2(N ) = 1

ln 2

(
1−

M∑
i=1

p̂2
i

)
with p̂2

i =
(
Ni + 1

N +M
)(

Ni + 2

N +M + 1

)
. (19)

In general, we find the following characteristics of the Bayes estimator to be noteworthy.
(i) Ĥq is defined in the parameter rangeq ∈ (−1,∞). Apparently, cases of particular

interest (and simplicity) are given whenq takes on integer valuesn ∈ N (set of non-negative
integer numbers) which allow one to replace Gamma functions by factorials. Similar simple
expressions can also be obtained whenq = (n+ 1)/2.

(ii) Given q = n, then equation (18) factorizes into a product ofn terms, which takes
on the following singled-out form:

p̂ni =
(
Ni + 1

N +M
)(

Ni + 2

N +M + 1

)(
Ni + 3

N +M + 2

)
· · ·
(

Ni + n
N +M − 1+ n

)
.

As we have shown above,̂Hq |q=1 includes the Bayes estimator of the Shannon entropy.
Setting nown = 1, we furthermore reobtain Laplace’s (successor rule) estimator (see, e.g.
[27]): p̂ni |n=1 = (Ni+1)/(N+M). Moreover, forq = n the asymptotic approacĥpni → fi

n

is realized by allowingN →∞, i.e. Ĥn converges towards the frequency-count estimator
of Hn. Thus, the Bayes estimator is consistent.

(iii) We note that the Bayes estimator ofHq is not equal to the estimator obtained by
inserting the Bayes estimator of the probability vectorp, i.e. Ĥq(N ) 6= Hq(p̂).

5. The Rényi entropy estimator

In this section, we consider the Bayes estimator of the Rényi entropyKq . Substituting
Kq for Hq in equation (6), the problem of deriving the estimator is the calculation of the
integral

K̂q(N ) = 1

1− q
1

W(N )

∫
S

dp log2Zq(p)P (N |p)Q(p). (20)

Even in the simple case ofM = 2, finding the explicit analytical solution of the above
integral turns out to be very complicated. In appendix C we will show that the Bayes
estimator of the binary Ŕenyi entropy (under the assumption of a uniform prior probability
density) can be written as

K̂q(N1, N2) = 1

ln 2

1

1− q
(
Iq(N1, N2)− q

N∑
l=N1

1

l + 1

)
(21)

for all N1+N2 = N . In the above expression we have introduced the following notation:

Iq(N1, N2) = 0(N + 2)

0(N1+ 1)0(N2+ 1)

∫ ∞
0

dx
xN2

(1+ x)N+2
ln(1+ xq). (22)
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Although the integrand in the above integral is well defined and thus this integral exists for
all q, we could not obtain a closed analytical expression for arbitrarily givenN1, N2 andq.
This does also hold for the caseM > 2. So the explicit evaluation of equation (20) remains
a challenge.

Figure 2. The rank-ordered hexamer distribution of the completeHaemophilus influenzaeDNA
sequence displayed as a double-logarithmic plot (�). For a comparison, the rank ordered
hexamer distribution of a Bernoulli-sequence of same length has been included in the figure
(M).

Although the equation in the binary case (see equation (22)) could be solved numerically
to give K̂q , we may seek another strategy which is of practical use also in the multi-variate
caseM > 2. We recall thatHq andKq are intimately related to each other via equation
(5). Therefore, a natural way to estimateKq would be to estimateHq and then use relation
(5) to computeKq of corresponding order. Hence, we may write down the (indirect) Bayes
estimatorK̃q (see equation (11)) in the form†

K̃q(N ) = 1

1− q log2

{
0(N +M)

0(N +M + q) ×
[ M∑
i=1

0(Ni + 1+ q)
0(Ni + 1)

]}
. (23)

Since limq→1 K̃q = limq→1 Ĥq , the limit K̃1 = Ĥ holds and we again reobtain the Bayes
estimator of the Shannon entropy. The motivation to proceed in this way is led by the fact
that bothĤq andK̃q can be understood as entropies computed from the Bayes estimator of
the partition functionZq . As such, we gain a significant reduction of the entropy variance
due toẐq .

† Please note that we distinguish the indirect from the direct Bayes estimator by a tilde.
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Figure 3. Comparison of the entropy estimatorŝH2 (right) and H̄2 (left) with M = 4096,
N = 4000 and equidistributedpi = 1/M. We observe the small width of the variance of the
Bayes estimator̂H2 as compared with the frequency-count estimatorH̄2. Equation (A3) predicts
the entropy bias with1Ĥ2 = −2.66× 10−4 (bits/symbol), in good agreement to the observed
value. According to [34], the bias of̄H2 can be approximated to be1H̄1 = −0.36× 10−3

(bits/symbol), which is also in good agreement with the observed value. In samples whereN

is in the order of magnitude ofM, the reliability of the Bayes estimator is significantly higher
than the reliability of the frequency-count estimator.

6. Numerical tests

In this section we compare the variances of the direct and indirect Bayes estimators,Ĥq
and K̃q , with the variances of the frequency-count estimators,H̄q and K̄q . To investigate
and contrast the performance of the two different estimators we choosem-step memory
Markov processes belonging to the following cases. (a) Generated by a process with
no memory, i.e.m = 0, and (b) generated by a process with memorym = 5. In (a)
we choose a process with equidistributed probabilities (henceforth denoted as Bernoulli
process), whereas in the latter case we use the fifth-order transition probabilities taken from
the complete 1830 240 nucleotides longHaemophilus influenzaeDNA sequence [35] to
generate a Markov chain with fifth-order memory. Figure 2 shows the rank-ordered statistics
obtained from the above DNA sequence and from a sequence of same length derived from
a Bernoulli process. It can be seen that the DNA sequence is far more inhomogeneous than
the realization of the Bernoulli process. The derived rank-order frequencies might count
as a typical example representing hexamer distributions in (prokaryotic) DNA. The entropy
analysis of biosequences has received applications in order to distinguish between coding
and non-coding DNA [36], to detect repeated nucleotide sequences [37], and to characterize
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Figure 4. Comparison of the entropy estimators̃K2 (right) and K̄2 (left) with M = 4096,
N = 4000 and equidistributedpi = 1/M. We observe that fluctuations of the Bayes estimator
K̃2 are strongly suppressed in comparison with the frequency-count estimatorK̄2. Equation (A5)
predicts the entropy bias with1K̃2 = −0.81 (bits/symbol), in good agreement to the observed
value. According to [34], the bias of̄K2 can be approximated to be1K̄2 = −1.02 (bits/symbol),
which is also in good agreement with the observed value.

protein sequences [23, 38]. A prerequisite to the application of generalized entropies in
biosequence analysis are reliable estimators. Therefore we consider a probability vector
derived from a DNA sequence to test the performence of the Bayes estimators, given by
expressions (12) and (23), versus the frequency-counts estimators, which are obtained by
defining Z̄q →

∑M
i=1 f

q

i with fi = Ni/N .
Since we are particularly interested in the case where the size of the sequence length is in

the order of magnitude of the cardinality of the alphabet,M = 46, we perform our numerical
simulations withN(a) = 4× 103 andN(b) = 8× 103. Then, according to the probability
vectorp ≡ (p1, . . . , p4096), a sequenceS is randomly generated from which we estimate
the entropy values. In both cases we can also compute the theoretical hexamer entropies
(since we take the relative frequencies obtained from the DNA sequence as probabilities
by definition). Hence, the difference between the estimated and theoretical values defines
a random variable, which we define as ‘entropy estimate deviation from true’. Generating
an ensemble of 10 000 sequences and estimating the entropies from each sequence, we
obtain the histograms displayed in figures 3–5. These studies demonstrate the merit of the
Bayes order-2 entropy estimators as compared with the frequency-count estimators. Indeed,
the variances of the Bayes estimates are significantly smaller than the variances of the
frequency-count estimates for both Markov processes with memorym = 0 andm = 5. In
repeated simulations with different sequence lengths and different values ofq ranging from
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Figure 5. Comparison of the entropy estimatorŝH2 (right) and H̄2 (left) with M = 4096,
N = 8000 andpi derived from theH influenzaeDNA sequence. We observe the smaller variance
of the Bayes estimator̂H2 in comparison with the frequency-count estimatorH̄2. Equation (A3)
predicts the entropy bias with1Ĥ2 = −0.38× 10−4 (bits/symbol) and, according to [34], the
bias ofH̄2 can be approximated to be1H̄1 = −0.18× 10−3 (bits/symbol).

−1 to 50 we could observe similar results: the Bayes estimator ofHq andKq produces
significantly smaller variances than the frequency-count estimator.

As analytical calculations and numerical simulations reveal, the Bayes estimator ofZq
(and hence forHq andKq) is biased. As we will show in appendix A, this bias can be
approximated withinO(1/N), by using a straightforward analytical approach.

7. Summary and conclusions

In this paper we derived the direct Bayes estimatorĤq of the order-q Tsallis entropy and
the indirect Bayes estimators̃Kq of order-q Rényi entropy of a finite, discrete data set.

Our approach for deriving the Bayes estimators ofHq andKq was motivated by the
requirement to estimate generalized entropies from realizations where the total sample size
N available may only be in the order of magnitude of the cardinalityM. The central result
of this work, namely the Bayes estimator of the Tsallis entropyHq , is stated in expression
(12). As we could not arrive at a closed form expression of the direct Bayes estimator of
the Ŕenyi entropy, we proposed an indirect Bayes estimator by the transformation formula
which connects the Tsallis with the Rényi entropy. In fact, both estimators,̂Hq and K̃q ,
are based on the Bayes estimator of the partition functionZq , which may be exploited to
estimate related quantities such as generalized dimensions or order-q Kolmogorov entropies.
In the case ofq = (n+ 1)/2, n ∈ N , these estimators are easy to implement for numerical
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purposes.
A comparative study of the accuracy by which both the Bayes and the frequency-count

estimators extract the order-2 entropies ofm-step memory Markov chains demonstrates the
strength of the Bayes estimator. Over the whole parameter rangeq ∈ (−1,∞) the Bayes
estimator outperforms the frequency-count estimator by a significantly smaller variance of
its estimates. This makes the Bayes estimator appropriate to measure generalized entropies
in a sample, whose sizeN may be as small as the cardinalityM of the alphabet.

The Bayes estimatorŝHq andK̃q have been derived under the assumption of a uniform
prior probability density. Clearly, the specific choice of an assumption for the prior
probability density is application dependent. Given no other constraint exceptp ∈ S,
we assumed a constant prior probability density over the simplex. Note that this does not
mean that the probabilitiespi are equidistributed, but rather that all probability vectorsp on
the simplexS are equiprobable. Nevertheless, the numerical simulations demonstrate that
for the probability vectors considered is this work, which are by no means equidistributed
on the simplex, the Bayes estimator withQ(p) = constant leads to variances which are
significantly smaller in comparison with the variances of the frequency-counts estimators
of generalized entropies of orderq.
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Appendix A. Finite-size effects

This appendix is devoted to asymptotic length corrections of the entropy bias ofĤq andK̃q .
As shown by numerical simulations in sections 4 and 5, although the variance is significantly
small both Bayes estimators produce biased entropy estimates. It is a general feature that
many estimators, in particular those minimizing the variance, share this property of being
biased. Consequently, the systematic deviation of the expectation value of the estimated
entropies from the true entropy value, namely the bias, has to be calculated and taken into
account in order to correct the bias of the observed estimates. Explicitly,

1Ĥq = EĤq(N )−Hq(p) = 1

ln 2

1

1− q
( M∑
i=1

1p̂
q

i

)
(A1)

defines the bias of the estimator̂Hq . Here by E we denote the expectation value with respect
to the multinomial distribution: E(·) =∑(N1,...,NM)

P (N |p)(·)δ(∑M
i=1Ni −N). Clearly, an

unbiased statistic satisfies1(·) = 0.
The problem encountered in deriving the bias of entropy estimators is that it is difficult to

obtain a closed form expression. However, in this case one may still obtain an approximation
to the exact bias, for example, by expanding a power-series around the true values ofp̂

q

i

and applying E to each individual term within this series. The underlying idea exploits the
fact that any probability distribution can, in principle, be extensively described by all of
its moments. For the Bayes estimators derived in this work, this applies toq = n, n > 1.
Expanding the exact entropy bias as a series in terms of(1/N)d with d = 1, 2, . . ., we
arrive at ad = 1 approximation by Taylor-expanding the entropies in powers of(fi − pi)m,
m ∈ N , and truncating this series after the quadratic term.
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As principles of this technique have been discussed in detail, for example in [21, 34],
we will not elaborate on this in further detail here, but only present the final results of the
O(1/N) approximation of the entropy bias for the caseq = 2. Since

1p̂
q

i |q=2 = [2(2Npi + 1)− (2N +M)Mp2
i ]/(N +M)2 (A2)

we obtain the entropy bias of the order-2 Tsallis entropy as

1Ĥ2 = − 1

ln 2

(2N +M)(2−MZ2)

(N +M)2 (A3)

(note that the approximation is exact for the caseq = 2). In order to obtain order-2 Tsallis
entropy estimates that are unbiased inO(1/N), we define the estimator

Ĥ2
(d=1) = Ĥ2+ 1

ln 2

(2N +M)(2−MẐ2)

(N +M)2 . (A4)

For the Bayes estimator of the Renyi entropy it is more difficult to calculate the entropy
bias. Given equidistributed states, we find that E log(·) ≈ log E(·) holds, and thus we can
obtain an approximation to the bias of̃K2, which reads as:

1K̃2 = − log2

[
N2+ 2(2N +M)/Z2

(N +M)2
]
+O

(
1

N2

)
. (A5)

Hence, in analogy to equation (A4), we obtain Rényi entropy estimates̃K2
(1)

that are
unbiased inO(1/N). For non-Bernoulli processes fluctuations increase, which render the
above approximation to be, in general, no longer reliable. In this case, unbiased estimates
of K2 (in the order ofO(1/N)) may be obtained by a transformation of the unbiased Tsallis

entropyĤ2
(1)

.
According to the correction terms (see expressions (A3) and (A5)) the systematic error

depends on the individual probability componentspi as well as the cardinality of the alphabet
M. Since the simulation performed in this investigation are not aimed at a detailed analysis
of finite-size effects but rather a study of the variances of the Bayes entropy estimator versus
the frequency-count estimator, we insert the theoretical values ofpi in the above correction
terms, i.e. we set̂pi = pi . In any attempt to estimate these quantities from a sample of
data points, it is crucial to the entropy bias by which method we estimate the unknown
variablespi (see, e.g. [39]). A study of the quantification of the order-q entropy bias,
using asymptotic length corrections, deserves further investigations and will be undertaken
in forthcoming work.

Appendix B. Calculation of the normalization constantW

Under the assumption of a stationary, independent distributed sample of data points, the
conditional probability density to observe a sample with occupation numbers{N1, . . . , NM}
is given by the multinomial distributionP(N |p) = CN

∏M
i=1p

Ni
i . Here the multinomial

coefficient reads asCN = N !/
∏M
i=1Ni !, and the size of the sample isN =∑M

i=1Ni .
We defineW ′(N ) = W(N )/CN . Then, with a uniform prior probability density, the

reduced normalization constant reads as

W ′(N ) = 1

CN

∫
S

dpP(N |p)Q(p) =
∫
S

M∏
j=1

dpj p
Nj
j . (B1)
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Introducing the auxiliary variablekj = 1−∑j

l=1pl , the explicit integral takes on the form

W ′(N ) =
∫ 1

p1=0
dp1p

N1
1

∫ k1

p2=0
dp2p

N2
2 . . .

∫ kM−2

pM−1=0
dpM−1p

NM−1

M−1 (kM−2− pM−1)
NM . (B2)

In the above expression, all integrals are of the type
∫

du ua(ξ − u)b. Changing co-ordinates
u = ξv, these integrals can be rewritten in terms of ordinary Beta-functions∫ ξ

0
du ua(ξ − u)b = ξa+b+1B(a + 1, b + 1) (B3)

for all positive real numbersa and b, and B(a, b) = 0(a)0(b)/0(a + b). The relation
0(n+ 1) = n! holds for n ∈ N .

Using relation (B3), we may integrate equation (B2) overpM−1 to obtain

W ′(N ) = B(NM−1+ 1, NM + 1)×
{∫ 1

p1=0
dp1p

N1
1

∫ k1

p2=0
dp2p

N2
2 . . .

. . .

∫ kM−3

pM−2=0
dpM−2p

NM−2

M−2 (kM−3− pM−2)
(NM−1+NM+1)

}
.

Completing the iteration for all but the integration overp1, this yields

W ′(N ) =
M−1∏
m=2

B

(
Nm + 1,

M−1∑
j=m

Nj+1+ (M −m)
)

×
{∫ 1

p1=0
dp1p

N1
1 (1− p1)

(
∑M
j=2Nj+(M−2))

}
.

Expressing the Beta-functions in terms of Gamma-functions, we obtainW ′(p1;N ) in the
form

W ′(p1;N ) = pN1
1

∏M
j=20(Nj + 1)

0(
∑M
j=2Nj +M − 1)

(1− p1)
(
∑M
j=2Nj+(M−2)). (B4)

Inspecting the above expression, we realize that equation (B4) can, in fact, be readily written
down for a generalith component:

W ′(pi;N ) = pNii

∏M
j=1
j 6=i

0(Nj + 1)

0(
∑M
j=1(1− δij )Nj +M − 1)

(1− pi)(
∑M
j=1(1−δij )Nj+(M−2)). (B5)

Integrating (B5) overpi , we arrive at the normalization constant

W(N ) = CN
∫ 1

pi=0
dpi W

′(pi;N ) = 0(N + 1)

0(N +M). (B6)

Appendix C. Bayes’ estimator of the binary Renyi entropyKq

Under the assumption of a uniform prior probability density,Q(p) = constant, the Bayes
estimator of the binary Ŕenyi entropy of orderq can be written as

K̂q(N1, N2) = 1

1− q
1

W ′(N1, N2)

∫ 1

0
dp pN1(1− p)N2 log2[pq + (1− p)q ] (C1)
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for all N1 + N2 = N . Using the normalization constant (B6), we rewrite equation (C1) in
the form

K̂q(N1, N2) = 1

ln 2

1

1− q
0(N + 2)

0(N1+ 1)0(N2+ 1)
×
{
q

∫ 1

0
dp pN1(1− p)N2 lnp

+
∫ 1

0
dp pN

(
1− p
p

)N2

ln

[
1+

(
1− p
p

)q]}
. (C2)

The first term on the right-hand side of (C2) can be calculated to become

q

∫ 1

0
dp pN1(1− p)N2 lnp ≡ q ∂

∂N1

(∫ 1

0
dp pN1(1− p)N2

)
= q ∂

∂N1
B(N1+ 1, N2+ 1)

= −qB(N1+ 1, N2+ 1)

( N∑
l=N1

1

l + 1

)
. (C3)

In the remaining term in equation (C2), we change the co-ordinatex = (1−p)/p and thus
arrive at

K̂q(N1, N2) = 1

ln 2

1

1− q
(
Iq(N1, N2)− q

N∑
l=N1

1

l + 1

)
(C4)

where we define

Iq(N1, N2) = 0(N + 2)

0(N1+ 1)0(N2+ 1)

{∫ ∞
0

dx xN2[1+ x]−(N+2) ln(1+ xq)
}
. (C5)
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