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Abstract. The orderg Tsallis (H,) and Renyi entropy K,) receive broad applications in

the statistical analysis of complex phenomena. A generic problem arises, however, when these
entropies need to be estimated from observed data. The finite size of data sets can lead to serious
systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem
of estimating generalized entropies from finite samples and derive the Bayes estimator of the
orderyg Tsallis entropy, including the order-1 (i.e. the Shannon) entropy, under the assumption of
a uniform prior probability density. The Bayes estimator yields, in general, the smallest mean-
quadratic deviation from the true parameter as compared with any other estimator. Exploiting
the functional relationship betweefi, and K,;, we use the Bayes estimator &f, to estimate

the Renyi entropyK,. We compare these novel estimators with the frequency-count estimators
for H, and K,. We find by numerical simulations that the Bayes estimator reduces statistical
errors of ordely entropy estimates for Bernoulli as well as for higher-order Markov processes
derived from the complete genome of the prokanideemophilus influenzae

1. Introduction

Building on the works of Shannon [1] and Khinchin [2], generalized entropies have
withessed an increasing interest in their application to characterize complex behaviour
in models and real systems. As the Shannon entropy is formally defined as an average
value, the idea underlying a generalization is to replace the average logarithms by an
average of powers. Then this gives rise to the oedérsallis entropy H, [3, 4] or,
similarly, the Renyi entropy K, [5]. The external parameteg applies to describe
inhomogeneous structures of the probability distribution and hence the associated process
under consideration. From both ordgrentropies,H, and K,, the Shannon entropy is
obtained in the limity — 1. Applications of ordeg entropies occur in a variety of fields

of sciences such as, e.g. nonlinear dynamical systems [6—10], statistical thermodynamics
[11-16], classical mechanics [17], or evolutionary programming [18, 19].

Here we address the estimation of these entropies from a finite set of experimental data.
Under the assumption of a stationary process generating the data, the data set is composed
out of N data points chosen from possible different outcomes. The problem that arises
when entropies are to be estimated from these finite data sets is that the probabilities are
priori unknown. Naively replacing these probabilities by the sampled relative frequencies
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produces large statistical and systematic deviations of estimates from the true value [20, 21].
This problem becomes serious when the number of data p@irgsn the order of magnitude

of the number of different statég, which occurs in many practical applications, for example

in the estimations of correlations and dimensions. In such cases, the choice of an estimator
with small deviations from the true value becomes important. Several different estimators
have thus been developed, mainly devoted to the estimation of the Shannon entropy [22—
27]. Specific estimators for the@Ryi entropy and for the dimensions associated to them
have also been derived, as well as for upper bounds on entropy estimates [24, 27].

While one can, in principle, calculate the systematic errors arising from frequency
counts, less fluctuating entropy estimates can only be obtained by employing a different
entropy estimator. The estimator which possesses the optimal property to minimize the
mean-quadratic deviation of the estimate from the true value, subject to a certain prior
assumption, is customarily referred to as the Bayes estimator. In this work, we derive the
Bayes estimator of the Tsallis entropy and discuss its statistical properties. We then exploit
this Bayes estimator to measure thenii entropy.

This paper is organized as follows. In section 2 we introduce the generalized entropy
concept, starting from the definition of the canonical (Shannon) entropy, which we extend
to non-logarithmic (ordet) averages. In section 3 we turn to the problem of estimating
functions of probability distributions from a finite, discrete data set and introduce the Bayes
estimator of a statistic. In section 4 of this work, we derive the Bayes estimator of the
orderg Tsallis entropy under the prior assumption of a uniform prior probability density.
We discuss properties of this estimator Hj and contrast the result obtained with the
frequency-count estimator. Using the functional relationship connecting the @rosalis
entropy, H,, with the Renyi entropy,K,, we propose a method on how to extr&gt from
a data set in section 5. In section 6 we apply the Bayes estimators to numerically compute
order-2 entropies of Markov processes with zero- and five-step memories. Our concluding
remarks are given in section 7. Consigned to appendix A we present some analytic results
about systematic errors (i.e. the bias) of the entropy estimators, which complete this work.

2. Generalized entropies

This section is aimed at introducing the notation used throughout this work as well as giving
the definitions of the ordeg-Tsallis entropy H,, and the Rnyi entropy K,. We then review
some basic properties of these entropies, which will finally allow us the derivation of an
indirect Bayes estimator of the&Ryi entropy in section 5.

Consider a random variabld that can take onM different discrete values,
i =1,..., M, with an associated probability vectpr= {p1, ..., py} with components
pi = p(a;). The probabilities satisfy the two constraintsOp; < 1 and Zf‘il pi=1 1t
is customary to refer to the set of all possible outcomes as the alpidabéh cardinality
M. Then the Shannon entropy df is defined as

M
H(A) =— ) pilog, pi = —(log, pi). (2)

i=1
Since the base of the logarithm is chosen to be 2, the Shannon entropy is measured in units
of bits. One distinctive property off, which is not shared by the generalized entropies,
is worth mentioning: the entropy of a composite event can be given as the sum of the
marginal and the conditional entropy.

By equation (1), events having either a particularly high or low occurrence do not
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contribute much to the Shannon entropy. In order to weight particular regions of the
probability vectorp, one can consider the following partition function:

M
Z,(A) =Y pl = (pi7h. ©)
i=1

In contrast to equation (1), the average logarithm is now replaced by an average of powers
of g. Clearly, a change of the orderwill change the relative weights of how the event

i contributes to the sum. Therefore, varying the paramgtatlows us to monitor the
inhomogeneous structure of the distributipn the largerq, the more heavily the larger
probabilities enter intdZ,, and vice versa. ObviouslyZy equals the number of events

with non-vanishing probability, and introduces normalization. Then the ordgiFsallis
entropy is defined as

1 Z,0-1_ 1 (pi -1
n2 1-g ~In2 1-¢q °

Since the prefactor is chosen to bgli2, the Tsallis entropy is measured in units of bits.
This can be seen by considering the limit> 1. we easily verify that limp_., H, = H
holds.

The orderg entropy due to Bnyi is given by

H,(A) = ®)

1 -
Koy =1— log, Z,(A) = —log,(p! )M=Y, 4

Here the argument of the logarithm is the generalized average of the nupbheBy
equation (3), the relationship connecting both orgeantropies reads as

K,(A) = log,[1 4+ (1 —¢)In2 H,(A)]. (5)

1-¢q
From equation (5) we see that for fixed K, and H, are monotonic functions of one
another and that ligp,; K, = H holds.

Let us summarize the following features of ordeentropies.

() H, > 0 andK, > 0. For givenM, the global maxima (minima) are attained at
pi =1/M Vi for ¢ > 0 (g < 0). In particular, we have that;"® = H™.

(i) H, and K, are monotonically decreasing functions gffor arbitrary probability
vectorsp: H, > H, andK, > K, for g < q'.

(i) H,(A) is a concave (convex) function of the probabilities given- 0 (g < 0).
The curvature dependence &f, upong andp is non-trivial [4]. Yet the following two
inequalities hold:K, is a convex (concave) function ¢f for ¢ <0 (0 < g < 1).

(iv) Considering two subsets} and 3, thenK, (A, B) obeys additivity for independent
random variables, wherea§,(A, B) is pseudo-additive. That is, we finH,(A, B) =
H,(A)+ H,(B)+ (1—-¢q)H,(A)H,(B). FurthermoreH,(A, B) generalizes the Shannon-
additivity to the ordery (see, e.g. [1] or [4] for a definition and discussion).

By the above properties, the whole set of orgeentropies (which generalize the
Shannon entropy) provides us with a whole spectrum of entropies, in whieh 1 is
singled-out by the property of composite events. In the light of the fact&khait indeed
additive but, in general, not a concave (convex) function of the probabijities the entire
simplex, it is remarkable that via the nonlinear transformation (5) we are able to switch
between two types of entropies of ordgr either having the property of additivity or of
well-defined concavity (convexity).
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Flgure 1. Comparison of the Bayes and the frequency-count estimator of the Shannon entropy,
Hy andH; respectively. We generate an ensemble of 10 000 sequences, each of which composed
of N = 250 data points chosen from an alphabet with cardinality= 256. The 256 possible
outcomes were samples from a uniform distributign,= 1/M. From each such sequence,

the entropy is estimated by the Bayes estimator and the frequency-count estimator. This figure
displays the corresponding histogramsft} (right) and A, (left), measured in units of bits

per symbol. It can be seen that the variancelefis about one order of magnitude smaller in
comparison with the variance df;. Note that the significant negative bias can, in principle,

be approximated by length correction formulae. Therefore, it is the smaller variarfée thft

makes this estimator superior.

3. Bayes’ estimators

The generic problem in estimating entropies from finite realizations is that the probabilities
pi remain hidden to the observer. For a given ensemble of data sets one estimator can
on average come close to the true value for some probability distribution, while a change
in the distribution may favour another estimator. In particular, if the cardinalityl aé

in the order of the number of data points, then fluctuations increase and estimates usually
become significantly biased. By bias we denote the deviation of the expectation value of
the estimator from the true value. Thus, the problem in estimating functions of probability
distributions is twofold: we seek to construct an estimator whose estimates both fluctuate
with the smallest possible variance and are least biased.

The Bayes estimator has the optimal property of minimizing the mean-quadratic
deviation [28-30]. This feature is illustrated in figure 1, by displaying the distribution
of estimates of the order-1 Tsallis (i.e. the Shannon) entropy for two estimators: the Bayes
estimator#; and the frequency-count estimatéf; with M = 256 andN = 250. For
this investigation, the Bayes estimator is given in (17). Defining the relative frequencies



Bayes’ estimators of generalized entropies 2555

to be f; = N;/N, whereN; is the number of observations of the symbpthe frequency-

count estimator reads d% = — Z?il filog, fi. Inspecting the width of the variances of

our estimates reveals the superiority of the Bayes estimator: fluctuations of its estimates are
significantly suppressed, as compared with the fluctuations of the frequency-count estimates.
However, let us point out yet another feature, namely that there is still a substantial bias

affecting both estimates. An approach to approximate (and hence correct) the entropy bias
of H, will be given in appendix A.

4. The Tsallis entropy estimator

In this section we focus upon the first task stated in the preceding section, by deriving
the Bayes estimator of the generalized Tsallis entréf)y The total number of symbols
available in a sample for the estimation is given by = Zf‘ilN,-. Let further
P(Nlp) = N![]‘[f‘i1 piM/N,-!] be the underlying conditional probability distribution to
obtain the (multinomially distributed) observable veci§r with componentsy;. Finally,

Q(p) denotes the prior probability density of the probability vecjar It satisfies

the constraintfs dp O(p) = 1 where the integration extends over the whole simplex

S ={p|Vi p; =0, Zf‘il pi = 1}. Then the Bayes estimator &f, reads as

— 1
T(N) = 5o fs dp H,(p) P(Np) O(p) ©)

where the normalization constant is given by

W(N) = /Sdp P(N|p)Q(p). Q)

According to Bayes’ theoremP (p|N) = P(N|p)Q(p)/Q(N). Thus, equation (6) is
equivalent toH,(N) = fs dp H,(p)P(p|IN), which is the average off,(p) over the
posterior distributionP (p|IV).

In what follows, we will derive the Bayes estimator &f, under the assumption of a
uniform prior probability densityQ (p) = constant. That is to say, we regard all possible
probability vectorgp € S to be relevant.

If we write down the Bayes estimator &f, as

— 1 1 e 1 .
BN = o7 B =1 win Z,N) = g [ ap S PV @

then it can be seen that the derivation@ reduces to the derivation of the Bayes estimator
of the partition functionZ,. The normalization constaritt and the quantityy’ (see later)
will be evaluated in appendix B. Interchanging the integral with the finite stymmay be
cast into the form

_ (N + M) { M / M (N+55)
Zy(N)= —r——— X dp;p; "t ©)
M=y & L
Integrating overM — 1 of the M components, we obtain
—~ (N + M) Mot ,
Zy(N) = —p— X {Z dp; W' (pi; N)pi t. (10)
l_[j=1 F(N;+1) i=17/pi=0
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Evaluating the remaining integral, we arrive at

—~ . T(N+M) L TN +1+9)
Zq(N)_F(N+M+q)X|:; ['(N; +1) ] (11)

and thus, composing all above expressions, we eventually obtain

. _ 1 1 (N + M) M LN, +1+¢q)
Hq(N)—ml_q{r(N+M+q)X[;W}_l}' (42

Expression (12) constitutes a central result of this work: the Bayes estimator of the Tsallis
entropy of orderg. To illustrate the differences between the fluctuations of the Bayes
estimator and the frequency-count estimator Hyf, in the following we will simplify
expression (12) for the special cages= 1 andg = 2. The motivation for this parameter
choice stems from the following. We recall thaf, is indeed a generalization off,
providing upper and lower bounds for the Shannon entropy. As such, we wish to make
contact with the Bayes estimatéf for the Shannon entropy. This is realized in the limit
g — 1. The second example, = 2, plays an important role in the statistical analysis of
nonlinear dynamical systems. Hegje= 2 gives rise to quantities such as the correlation
dimension and the second-order Kolmogorov entropy (see, e.g. [31] and references therein)
as well as a generalization of the mutual information which preserves positivity [32].

To obtain H;, we introduce the auxiliary function

X T(N; +1+4]

This will become useful due to the necessary consideration of the dimit 1, since
expression (12) is not defined otherwise. Introdueipg= N; +1+¢ andg, = N+ M +gq,
we may write at the limit point

I'(Bo) 9F(q)

Hi(N) = lim H,(N) = — 14
1(IN) qlinl 7 (IN) N2 oq |, (14)
where
IF (@) _ < { P)  q 1
— = ———— (P —vP B |- 15
dq Z (o) (By) v o~V b 13)
Here vV (z) = dInT'(z)/dz is the Digamma function. Since; and g; are integers, we
may express/ P (z) in terms of the finite harmonic sum®(z) = Y1 1/1 — E., with
E. = IimR%o(Zf:1 1/r — In R) being Euler’'s constant. Inserting this expression into

equation (15), we obtain

8F(1) M INCT)) o 1
Z{F(ao)rwo(z >} (16)

L

Hence we arrive at
N+M

1TE N +1 1
Hy(N) = InZ[ZN+M( 2 7)} (17)

I=N;+2

Equation (17) defines the Bayes estimator of the order-1 Tsallis entropy under a uniform
prior probability density. Comparing the above expression with results derived in [29, 33],
we verify the consistency of expression (12) in the lignit> 1. That is, the Bayes estimator
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of the order-1 Tsallis entropy is identical to the Bayes estimator of the Shannon entropy:
Hl =H.

We now turn to the casg¢ = 2. From equation (11) we can read off the Bayes estimator
of p? to be

—~ _ T(N+M) F'(Ni+1+q)

7 _ 18
PP TrNTM+e " TN 1D (18)

Thus, we write downffz in the form

e Ni+1>( N; +2 )
Hy(N) = ( ZP) Wlthp,»—(NJrM T (19)

In general, we find the following characteristics of the Bayes estimator to be noteworthy.
(i) H, is defined in the parameter ranges (—1, o). Apparently, cases of particular
interest (and simplicity) are given whertakes on integer valuesc N (set of non-negative
integer numbers) which allow one to replace Gamma functions by factorials. Similar simple
expressions can also be obtained whea (n + 1)/2.
(i) Given ¢ = n, then equation (18) factorizes into a productroferms, which takes
on the following singled-out form:

b= <N+M) <N+M+1> (N+M+2)"'(N+M—1+n>'
As we have shown above?i\q =1 includes the Bayes estimator of the Shannon entropy.
Setting nown = 1, we furthermore reobtain Laplace’s (successor rule) estimator (see, e.g.
[27]): p! n=1 = (Ni+1)/(N+M). Moreover, forg = n the asymptotic approaqb; — fi"
is realized by allowingv — oo, i.e. H, converges towards the frequency-count estimator
of H,. Thus, the Bayes estimator is consistent.

(iii) We note that the Bayes estimator &f, is not equal to the estimator obtained by
inserting the Bayes estimator of the probablllty vegoi.e. H (N) # Hy ().

5. The Rényi entropy estimator

In this section, we consider the Bayes estimator of tié&yR entropyK,. Substituting
K, for H, in equation (6), the problem of deriving the estimator is the calculation of the
integral

— 1
KNy =7— p W(N)/dp log, Z,(p) P(N|p) Q(p). (20)

Even in the simple case dff = 2, finding the explicit analytical solution of the above
integral turns out to be very complicated. In appendix C we will show that the Bayes
estimator of the binary &yi entropy (under the assumption of a uniform prior probability
density) can be written as

Koo, Ny = — 2 (1, (Ve V) ﬁ: ! (21)
T X R N oy
for all Ny + N, = N. In the above expression we have introduced the following notation:

(N +2) 00 xN2
(N1 +DIO(N2 + 1) Jo 1+ x)N+2

I;(N1, No) = In(1 + x9). (22)
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Although the integrand in the above integral is well defined and thus this integral exists for
all g, we could not obtain a closed analytical expression for arbitrarily givenv, andg.

This does also hold for the casgé¢ > 2. So the explicit evaluation of equation (20) remains

a challenge.
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Figure 2. The rank-ordered hexamer distribution of the compléaemophilus influenzaBNA
sequence displayed as a double-logarithmic pld}. ( For a comparison, the rank ordered
hexamer distribution of a Bernoulli-sequence of same length has been included in the figure

(2).

Although the equation in the binary case (see equation (22)) could be solved numerically
to give K, we may seek another strategy which is of practical use also in the multi-variate
caseM > 2. We recall thatd, and K, are intimately related to each other via equation
(5). Therefore, a natural way to estimae would be to estimaté?, and then use relation
(5) to computek, of corresponding order. Hence, we may write down the (indirect) Bayes
estimatork, (see equation (11)) in the forfm

(N + M) 5 [f: F(N,»—i—l—i—q)]}
T'(N+M+gq) I'(N; + 1) '

= 1
Ky(N) = 7= p log, { (23)

i=1
Since lim,_.1 K, = lim,_1 H,, the limit K; = A holds and we again reobtain the Bayes
estimator of the Shannon entropy. The motivation to proceed in this way is led by the fact
that bothH, and K, can be understood as entropies computed from the Bayes estimator of
the partition functionZ,. As such, we gain a significant reduction of the entropy variance
due toZ,.

1 Please note that we distinguish the indirect from the direct Bayes estimator by a tilde.
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Figure 3. Comparison of the entropy estimatois (right) and Ay (left) with M = 4096,

= 4000 and eqwdlstnbuteﬂl = 1/M. We observe the small width of the variance of the
Bayes estimatoH; as compared with the frequency-count estimafpr Equation (A3) predicts
the entropy bias Wit Hp, = —2.66 x 1074 (bits/symbol), in good agreement to the observed
value. According to [34], the bias off, can be approximated to h&a H; = —0.36 x 103
(bits/symbol), which is also in good agreement with the observed value. In samples Mhere
is in the order of magnitude a7, the reliability of the Bayes estimator is significantly higher
than the reliability of the frequency-count estimator.

6. Numerical tests

In this section we compare the variances of the direct and indirect Bayes estlm‘@;ors

and Kq, with the variances of the frequency-count estlmatdsi; andK To investigate

and contrast the performance of the two different estimators we chaesatep memory
Markov processes belonging to the following cases. (a) Generated by a process with
no memory, i.e.n = 0, and (b) generated by a process with memary= 5. In (a)

we choose a process with equidistributed probabilities (henceforth denoted as Bernoulli
process), whereas in the latter case we use the fifth-order transition probabilities taken from
the complete 1830240 nucleotides loRigemophilus influenza®NA sequence [35] to
generate a Markov chain with fifth-order memory. Figure 2 shows the rank-ordered statistics
obtained from the above DNA sequence and from a sequence of same length derived from
a Bernoulli process. It can be seen that the DNA sequence is far more inhomogeneous than
the realization of the Bernoulli process. The derived rank-order frequencies might count
as a typical example representing hexamer distributions in (prokaryotic) DNA. The entropy
analysis of biosequences has received applications in order to distinguish between coding
and non-coding DNA [36], to detect repeated nucleotide sequences [37], and to characterize
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Figure 4. Comparison of the entropy estimatoks (right) and K> (left) with M = 4096,

N = 4000 and equidistributeg; = 1/M. We observe that fluctuations of the Bayes estimator
K> are strongly suppressed in comparison with the frequency-count estifiat@quation (A5)
predicts the entropy bias with K> = —0.81 (bits/symbol), in good agreement to the observed
value. According to [34], the bias &> can be approximated to ek, = —1.02 (bits/symbol),
which is also in good agreement with the observed value.

protein sequences [23, 38]. A prerequisite to the application of generalized entropies in

biosequence analysis are reliable estimators. Therefore we consider a probability vector
derived from a DNA sequence to test the performence of the Bayes estimators, given by

expressions (12) and (23), versus the frequency-counts estimators, which are obtained by
definingZ, — Y1, f7 with f; = N;/N.

Since we are particularly interested in the case where the size of the sequence length is in
the order of magnitude of the cardinality of the alphabét= 4%, we perform our numerical
simulations withNg = 4 x 10° and N, = 8 x 10°. Then, according to the probability
vectorp = (p1, ..., paoos), & sequence is randomly generated from which we estimate
the entropy values. In both cases we can also compute the theoretical hexamer entropies
(since we take the relative frequencies obtained from the DNA sequence as probabilities
by definition). Hence, the difference between the estimated and theoretical values defines
a random variable, which we define as ‘entropy estimate deviation from true’. Generating
an ensemble of 10000 sequences and estimating the entropies from each sequence, we
obtain the histograms displayed in figures 3-5. These studies demonstrate the merit of the
Bayes order-2 entropy estimators as compared with the frequency-count estimators. Indeed,
the variances of the Bayes estimates are significantly smaller than the variances of the
frequency-count estimates for both Markov processes with memogy0 andm = 5. In
repeated simulations with different sequence lengths and different valyesaofing from
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Figure 5. Comparison of the entropy estimators (right) and H, (left) with M = 4096,

= 8000 andp; denved from theH influenzaeDNA sequence. We observe the smaller variance
of the Bayes estimatai in companson with the frequency-count estimakhr. Equation (A3)
predicts the entropy bias with Hy = —0.38 x 1074 (bits/symbol) and, according to [34], the
bias of H, can be approximated to h&eH; = —0.18 x 103 (bits/symbol).

—1 to 50 we could observe similar results: the Bayes estimatdd,obind K, produces
significantly smaller variances than the frequency-count estimator.

As analytical calculations and numerical simulations reveal, the Bayes estimafgr of
(and hence forH, and K,) is biased. As we will show in appendix A, this bias can be
approximated withinO(1/N), by using a straightforward analytical approach.

7. Summary and conclusions

In this paper we derived the direct Bayes estlmdﬁ;rof the orderg Tsallis entropy and
the indirect Bayes estlmatoié of orderg Rényi entropy of a finite, discrete data set.

Our approach for denvmg the Bayes estimatorsHyf and K, was motivated by the
requirement to estimate generalized entropies from realizations where the total sample size
N available may only be in the order of magnitude of the cardinalityThe central result
of this work, namely the Bayes estimator of the Tsallis entréfjy is stated in expression
(12). As we could not arrive at a closed form expression of the direct Bayes estimator of
the Renyi entropy, we proposed an indirect Bayes estimator by the transformation formula
which connects the Tsallis with theéRyi entropy. In fact, both est|matorﬂq and Kq,
are based on the Bayes estimator of the partition funcipnwhich may be exploited to
estimate related quantities such as generalized dimensions orgokd#mogorov entropies.

In the case ofy = (n + 1)/2, n € N/, these estimators are easy to implement for numerical
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purposes.

A comparative study of the accuracy by which both the Bayes and the frequency-count
estimators extract the order-2 entropiesiebtep memory Markov chains demonstrates the
strength of the Bayes estimator. Over the whole parameter rargé—1, co) the Bayes
estimator outperforms the frequency-count estimator by a significantly smaller variance of
its estimates. This makes the Bayes estimator appropriate to measure generalized entropies
in a sample, whose siz€ may be as small as the cardinality of the alphabet.

The Bayes es'umatorH andK have been derived under the assumption of a uniform
prior probability density. Clearly, the specific choice of an assumption for the prior
probability density is application dependent. Given no other constraint excepts,
we assumed a constant prior probability density over the simplex. Note that this does not
mean that the probabilities; are equidistributed, but rather that all probability vectorsn
the simplexS are equiprobable. Nevertheless, the numerical simulations demonstrate that
for the probability vectors considered is this work, which are by no means equidistributed
on the simplex, the Bayes estimator wigh(p) = constant leads to variances which are
significantly smaller in comparison with the variances of the frequency-counts estimators
of generalized entropies of order
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Appendix A. Finite-size effects

This appendix is devoted to asymptotic length corrections of the entropy bfti; axhdl?:,.

As shown by numerical simulations in sections 4 and 5, although the variance is significantly
small both Bayes estimators produce biased entropy estimates. It is a general feature that
many estimators, in particular those minimizing the variance, share this property of being
biased. Consequently, the systematic deviation of the expectation value of the estimated
entropies from the true entropy value, namely the bias, has to be calculated and taken into
account in order to correct the bias of the observed estimates. Explicitly,

o~

- 1 1 (&

AH, = EH,(N) — H,(p) = ﬁﬁ(;m"q) (A1)
defines the bias of the estimatffg. Here by E we denote the expectation value with respect
to the multinomial distribution: E) = Z(Nl ’’’’’ vy PANIP)C )S(Zl 1 Ni — N). Clearly, an
unbiased statistic satisfies(-) =0

The problem encountered in deriving the bias of entropy estimators is that it is difficult to
obtain a closed form expression. However, in this case one may still obtain an approximation
to the exact bias, for example, by expanding a power-series around the true valefes of
and applying E to each individual term within this series. The underlying idea exploits the
fact that any probability distribution can, in principle, be extensively described by all of
its moments. For the Bayes estimators derived in this work, this appligs=to:, n > 1.
Expanding the exact entropy bias as a series in termd0¥)¢ with d = 1,2, ..., we
arrive at ad = 1 approximation by Taylor-expanding the entropies in powers/pf p;)™,

m € N, and truncating this series after the quadratic term.
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As principles of this technique have been discussed in detail, for example in [21, 34],
we will not elaborate on this in further detail here, but only present the final results of the
O(1/N) approximation of the entropy bias for the cage- 2. Since

A;?M:z = [2(2Np; +1) — (2N + M)Mp?]/(N + M)? (A2)
we obtain the entropy bias of the order-2 Tsallis entropy as
1 CN+M)(2—M2Zy)
In2 (N + M)?

AHp = — (A3)

(note that the approximation is exact for the case 2). In order to obtain order-2 Tsallis
entropy estimates that are unbiased]l/N), we define the estimator

—~(d=1
HZ( ) _

1 2N+ M)2— MZ>)
In2 (N + M)? '
For the Bayes estimator of the Renyi entropy it is more difficult to calculate the entropy

bias. Given equidistributed states, we find that Elpg- log E(-) holds, and thus we can
obtain an approximation to the bias &b, which reads as:

— N24+ 22N + M)/Z 1
AKF_'OQZ[ (15'+M>2 : 2}+O<ﬁ>' (A9)

Hy + (A4)

Hence, in analogy to equation (A4), we obtaireriyi entropy estimatefz(l) that are
unbiased inO(1/N). For non-Bernoulli processes fluctuations increase, which render the
above approximation to be, in general, no longer reliable. In this case, unbiased estimates

of K, (in the order of©O(1/N)) may be obtained by a transformation of the unbiased Tsallis
entropyfl\z(l)

According to the correction terms (see expressions (A3) and (A5)) the systematic error
depends on the individual probability componepiss well as the cardinality of the alphabet
M. Since the simulation performed in this investigation are not aimed at a detailed analysis
of finite-size effects but rather a study of the variances of the Bayes entropy estimator versus
the frequency-count estimator, we insert the theoretical values iof the above correction
terms, i.e. we sep; = p;. In any attempt to estimate these quantities from a sample of
data points, it is crucial to the entropy bias by which method we estimate the unknown
variables p; (see, e.g. [39]). A study of the quantification of the ordeentropy bias,
using asymptotic length corrections, deserves further investigations and will be undertaken
in forthcoming work.

Appendix B. Calculation of the normalization constant W

Under the assumption of a stationary, independent distributed sample of data points, the
conditional probability density to observe a sample with occupation nunbgrs. ., Ny}
is given by the multinomial distributior? (N'|p) = Cn [, p". Here the multinomial
coefficient reads a6 = N!/ ], N;!, and the size of the sample } = Y, N;.

We defineW’(IN) = W(IN)/Cx. Then, with a uniform prior probability density, the
reduced normalization constant reads as

1 i v
W) = o= [aoPavimow = [ [dnp)" ®1)
j=1



2564 D Holste et al

Introducing the auxiliary variablé; = 1 — 3"/_, p;, the explicit integral takes on the form

1 k1 kp—2
W'(IN) =/ dp1 pf“/ dp2 pévzu-/ dpu—1 po ka2 — pu—)™. (B2)
p1=0 p2=0

pu-1=0

In the above expression, all integrals are of the tyji u“ (& — u)’. Changing co-ordinates
u = &v, these integrals can be rewritten in terms of ordinary Beta-functions

§
/ duu®(E —u) =" Bla+1,b+1) (B3)
0

for all positive real numbera and b, and Ba, b) = I'(a)I"(b)/T'(a + b). The relation
I'(n +1) = n! holds forn e N.
Using relation (B3), we may integrate equation (B2) oygr_; to obtain

1 k1
W/ (N) =B(Ny_14 1 Ny + 1) x { / dp1 py" / dp2 p5?...
p1=0 p2=0

kyv-3

Nu—

. / dpm—2 py/ 2 tkyy—3 — PM—Z)(NMHNMH)}-
pm—2=0

Completing the iteration for all but the integration over, this yields

M-1 M1
W'(N) = l_[ B(Nm +1, Z Nizi+ (M — m))

m=2

J=m
! M
X{ | dnmpa- p1><2szf+<M2>>}.
p1=0

Expressing the Beta-functions in terms of Gamma-functions, we oli¥aip,; V) in the
form

[T +1)

M
(1= py) =2 N+M=2), (B4)
PN +M =1

W (p1; N) = pi*

Inspecting the above expression, we realize that equation (B4) can, in fact, be readily written
down for a generaith component:
[T+

W'(pi: N) = p” = (1= pp) @V +(41-2), (B5)
P (A= 8i)N;+ M —1)

Integrating (B5) overp;, we arrive at the normalization constant

(N +1)

TN+ M) (B6)

1
W(N)ZCN/ dp: W (pi; N) =
pi=0

Appendix C. Bayes’ estimator of the binary Renyi entropy K,

Under the assumption of a uniform prior probability densif(p) = constant, the Bayes
estimator of the binary &yi entropy of ordeg can be written as

1 1
—q W/'(N1, Np)

1
Ky(N1, Na) = 7 /0 dp pM (1 — p)™log,[p? + (1 — p)?] (C1)
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for all N1 + N, = N. Using the normalization constant (B6), we rewrite equation (C1) in
the form

1 T'(N +2) oo N
el dp pM (1 — p)MIn
In21—qF(N1+1)F(N2+1)X{q/O pp=p)=inp

+[Canp (1‘7”>N nf2+(22)]) €2

The first term on the right-hand side of (C2) can be calculated to become

1 8 1
q/ dp pM(1— p)™ lanq—</ dple(l—p)M)
0 dN1\ Jo

K, (N1, N) =

0
=qg—BWi1+1N+1

dN1
Voo
=—qgB(N1+1, N, +1 — ). C3
qB(Ny 2 )(1=ZMZ+1> (C3)

In the remaining term in equation (C2), we change the co-ordinate(1 — p)/p and thus
arrive at

_ 1 1 Vo1
K, (N1, No) = — ———( I, (N1, No) — — c4
¢(N1, N») In21—q(q( 1, N2) q1=21v:11+1> (C4)
where we define
'(N +2) {/‘X’ N C(N+2
I,(N1, No) = dx xV2[1 + x]" VM2 In(1 4+ x9) }. C5
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